skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vahidi, Soroush"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the most critical problems in the field of string algorithms is the longest common subsequence problem (LCS). The problem is NP-hard for an arbitrary number of strings but can be solved in polynomial time for a fixed number of strings. In this paper, we select a typical parallel LCS algorithm and integrate it into our large-scale string analysis algorithm library to support different types of large string analysis. Specifically, we take advantage of the high-level parallel language, Chapel, to integrate Lu and Liu’s parallel LCS algorithm into Arkouda, an open-source framework. Through Arkouda, data scientists can easily handle large string analytics on the back-end high-performance computing resources from the front-end Python interface. The Chapel-enabled parallel LCS algorithm can identify the longest common subsequences of two strings, and experimental results are given to show how the number of parallel resources and the length of input strings can affect the algorithm’s performance. 
    more » « less
  2. One of the most critical problems in the field of string algorithms is the longest common subsequence problem (LCS). The problem is NP-hard for an arbitrary number of strings but can be solved in polynomial time for a fixed number of strings. In this paper, we select a typical parallel LCS algorithm and integrate it into our large-scale string analysis algorithm library to support different types of large string analysis. Specifically, we take advantage of the high-level parallel language, Chapel, to integrate Lu and Liu’s parallel LCS algorithm into Arkouda, an open-source framework. Through Arkouda, data scientists can easily handle large string analytics on the back-end high-performance computing resources from the front-end Python interface. The Chapel-enabled parallel LCS algorithm can identify the longest common subsequences of two strings, and experimental results are given to show how the number of parallel resources and the length of input strings can affect the algorithm’s performance. 
    more » « less